The Theory of the Riemann Zeta-function
ثبت نشده
چکیده
منابع مشابه
A more accurate half-discrete Hardy-Hilbert-type inequality with the best possible constant factor related to the extended Riemann-Zeta function
By the method of weight coefficients, techniques of real analysis and Hermite-Hadamard's inequality, a half-discrete Hardy-Hilbert-type inequality related to the kernel of the hyperbolic cosecant function with the best possible constant factor expressed in terms of the extended Riemann-zeta function is proved. The more accurate equivalent forms, the operator expressions with the norm, the rever...
متن کاملLagrangians with Riemann Zeta Function
We consider construction of some Lagrangians which contain the Riemann zeta function. The starting point in their construction is p-adic string theory. These Lagrangians describe some nonlocal and nonpolynomial scalar field models, where nonlocality is controlled by the operator valued Riemann zeta function. The main motivation for this research is intention to find an effective Lagrangian for ...
متن کاملRiemann Zeta Function with Odd Arguments
Riemann zeta function is an important object of number theory. It was also used for description of disordered systems in statistical mechanics. We show that Riemann zeta function is also useful for the description of integrable model. We study XXX Heisenberg spin 1/2 anti-ferromagnet. We evaluate a probability of formation of a ferromagnetic string in the anti-ferromagnetic ground state in ther...
متن کاملA 11 Integers 11 B ( 2011 ) Dynamical Zeta Functions
These notes are a rather subjective account of the theory of dynamical zeta functions. They correspond to three lectures presented by the author at the “Numeration” meeting in Leiden in 2010. 1 A Selection of Zeta Functions In its various manifestations, a zeta function ζ(s) is usually a function of a complex variable s ∈ C. We will concentrate on three main types of zeta function, arising in t...
متن کاملq-Riemann zeta function
We consider the modified q-analogue of Riemann zeta function which is defined by ζq(s)= ∑∞ n=1(qn(s−1)/[n]s), 0< q < 1, s ∈ C. In this paper, we give q-Bernoulli numbers which can be viewed as interpolation of the above q-analogue of Riemann zeta function at negative integers in the same way that Riemann zeta function interpolates Bernoulli numbers at negative integers. Also, we will treat some...
متن کاملRandom Matrix Theory Predictions for the Asymptotics of the Moments of the Riemann Zeta Function and Numerical Tests of the Predictions
In 1972, H.L. Montgomery and F. Dyson uncovered a surprising connection between the Theory of the Riemann Zeta function and Random Matrix Theory. For the next few decades, the major developments in the area were the numerical calculations of Odlyzko and conjectures for the moments of the Riemann Zeta function (and other L-functions) found by Conrey, Ghosh, Gonek, Heath-Brown, Hejhal and Sarnak....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011